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Liquid-crystalline (LC) poly(3,3′′′-didodecyl-quaterthiophene) (PQT-12) was investigated to optimize
its side alkyl ordering and �-conjugated structure for high performance organic field-effect transis-
tor (OFET) applications. Initially, low-crystal films spun-cast on OTS-treated SiO2 substrates were
further crystallized via either thermal or solvent treatments. At temperatures (125–138 �C) driving
a LC state of PQT-12, mobile chains were better migrated into preformed crystals. The resulting
films showed highly crystal nanofibrils, in which �-conjugated polymer backbones (with an conju-
gated backbone spacing, d�010� of 3.80 Å) and the orientation of self-assembled side-chains were
tilted with respect to the film surface, respectively. However, via melting or solvent exposure pro-
viding isotropic states, film crystallization generated less ordered crystals with randomly oriented
side-chains, increasing d�010� up to 4.16 Å. As a result, the usage of LC characteristic allowed us to
consistently achieve the desirable crystal structure of PQT-12 and to robustly obtain high field-effect
mobility for FET applications.
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1. INTRODUCTION

Organic field-effect transistors (OFETs) incorporating

solution-processable, polymeric semiconductors have been

widely studied due to their potential in fabricating inte-

grated circuits for large-area and low-end electronics.1–7

The low-cost solution or liquid fabrication techniques,

coupled with physically compact, lightweight, and flexi-

bility, have driving force in research interest in organic

electronics. Most works have been focused on optimiz-

ing and inventing device fabrication for various solution-

processable semiconductors to achieve high performance

in OFETs, which have produced higher hole mobilities

(�FETs) up to 0.15 cm2/Vs.8�9

In order to improve solubility of �-conjugated polymer

semiconductors, various side-chains have been incorpo-

rated into these backbones.9�10 During crystallization, con-

jugated backbone chains are stacked by �–� interaction

into one dimensional (1D) nanofibrils and are separated in

the other by the alkyl side chains.11 In this case, these side

chains may either interfere or enhance molecular order-

ing of �-conjugated backbones, during direct solution-

processing methods: spin-, drop-casting, screen printing,

∗Author to whom correspondence should be addressed.

ink-jet printing, etc.2 For regioregular poly(3-alkyl thio-

phene)s (RR P3ATs) with the shorter side-chain (SC) inter-

val, spacings of layered polymer backbone (d�100�) and

intermolecular � overlap (d�010�) in these crystals tend to

increase monotonically with an increase in SC length (lSC).
Values of d�100� and d�010� increase from 16.1 to 25.5 Å

and from 3.74 to 3.90 Å, respectively, with an increase of

lSC from hexyl (C6H13� to dodecyl (C12H25) causing degra-

dation of crystallinity and �FET.
9�10

Although poly(3-dodecyl thiophene) and poly(3,3′′′-
didodecyl-quaterthiophene) (PQT-12) have the same type

of SC substituent, PQT-12 shows much shorter values

of d�100� and better �-conjugated nanostructures in cast

films, especially, after thermal annealing.9 It seemed to

be related to the molecular backbone architecture with

longer SC interval (∼15.5 Å), which effectively mini-

mizes steric hindrance of the bulky SCs on the reconfor-

mation of both polythiophene (PT) backbones and SCs.

Among �-conjugated organic thin films, PQT-12 films

with well controlled nanostructures provided a high �FET

of 0.07–0.12 cm2/Vs and good on/off current ratios �>105)

in OFET.8�13�14 In particular, the relatively lower amount

of the electron-donating alkyl groups could provide the

larger stability against oxidative doping, when compared

to RR P3ATs.8
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Fig. 1. DSC heating and cooling curves of PQT-12 powder. (The inset

represents chemical structure of PQT-12).

Liquid crystalline (LC) characteristics of PQT-12 were

indicated by differential scanning calorimetry (DSC) (see

Fig. 1). At a narrow region with temperature ranging from

125 to 138 �C, typical PQT-12 might have a LC state: at

Fig. 2. AFM topographic (top) and phase (bottom) images of (a) the as-spun and subsequently post-treated (b–d) PQT-12 films on OTS-treated

SiO2/Si substrates: (b), annealed at 130 �C for 2 hr; (c) slowly crystallized from the melt (at 170 �C) with 1 �C/min; (d) solvent-annealed under TCB

vapor (20 �C, 1 mm Hg).

130 �C (�), self-assembled structure of PQT-12 was still

maintained due to strong �–� interaction, although the

interdigitated structure of SCs was dissociated. Above

melting temperature �Tm� = 138 �C, e.g., 170 �C (�), the
�–� interaction to hold ordered LC structure completely

disappeared and PQT-12 became isotropic.12

In general, the presence of the long SCs on �-

conjugated PT chains is considered as one of obstacles

in developing highly ordered crystallites under fast sol-

vent evaporation processes with spin-casting warm or

hot solutions on relatively colder substrates, in compar-

ison to the well ordered self-assembly of P3HT from a

marginal solvent with temperature-dependent solubility.11

In addition, dispersed nano-aggregates or gel-like solutions

driven by strong �–� interactions of PQT-12 were eas-

ily obtained, when their solutions were stored or slowly

evaporated.14–16 From our preliminary result, it was found

that melt-crystallized or solvent-annealed PQT-12 films

showed low electronic performances in OFETs, when

compared to those of P3AT systems. However, crys-

talline growths of the mobile PQT-12 chains and the cor-

responding nanostructures have not been systematically

J. Nanosci. Nanotechnol. 12, 1220–1225, 2012 1221
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investigated, although they often disturbed solution film

fabrication for high performance OFETs.

Here, we have investigated phase behaviors of LC-type

PQT-12 (number average molecular weight = 31 kDa,

American Dye Source) via solution film casting and

various post treatments. 50–60 nm thick PQT-12 films

were spin-cast on OTS-treated SiO2 (300 nm thick)/highly

n-doped Si substrates held at 60 �C from warm

trichlorobenzene (TCB, 80 �C). Based on the DSC result

(Fig. 1), as-spun films were either thermally treated, espe-

cially, at the arrow-marked T s (� 130 �C and � 170 �C),
or were solvent-annealed for 30 min under TCB vapor

pressure (at 25 �C, 1 mm Hg). In the case of thermal treat-

ments, each as-spun film was annealed at 130 �C for 2 hr

or slowly melt-crystallized from 170 �C to 30 �C (under

N2 atmosphere: H2O and O2 < 0�1 ppm), respectively.

2. RESULTS AND DISCUSSION

Figure 2 represented AFM topographic and phase images

of the as-spun and further post-treated PQT-12 films. As

shown in Figure 2(a), the as-spun films did not show

any clear crystal feature, while 130 �C annealed sample

showed highly long crystal nanofibrils (length, L> 5 �m;

Fig. 3. (a–d) 2D GIXD patterns of PQT-12 thin films on OTS-treated SiO2 substrates: (a) as-spun; (b) 130 �C annealed; (c) melt-crystallized;

(d) solvent-annealed samples, respectively.

lateral width, Lw = 18±2 nm) oriented parallel to the film

surface (see Fig. 2(b)). From 170 �C, in which all molec-

ular interactions were dissociated, slowly melt-crystallized

film revealed relatively short nanorods with L< 1 �m and

Lw ∼ 30 nm, in comparison to the 130 �C annealed sam-

ple (see Fig. 2(c)). As shown in Figures 2(b and c), both

the thermal treatments for cast PQT-12 films could consid-

erably improve self-assembled nanostructure and its crys-

tallinity, as early reported.12 Note that the molten PQT-12

tended to be easily dewetted on the OTS-treated dielectric

surface (water contact angle ∼105�). In contrast, cast films

exposed by TCB solvent vapor, as plasticizers, revealed

nano-aggregates with diameters of 60–80 nm, causing sur-

face undulation in the film (see Fig. 2(d)). It was found

that the macroscopic crystal structures of PQT-12 were

significantly changed by enhancing the � overlap between

the polymer chain backbones. In particular, achieving fine

control over the directionality of �-conjugation in PQT-12

domains is currently a key challenge that must be over-

come to improve the performance of these devices.

In order to investigate crystalline structures and orien-

tations in the PQT-12 films showing discernible crystal

morphologies, synchrotron-based grazing-incidence X-ray

diffraction (GIXD) was performed at X9, Brookhaven

1222 J. Nanosci. Nanotechnol. 12, 1220–1225, 2012
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National Laboratory: angle of the incident beam was fixed

to 0.3� with respect to the OTS-treated SiO2/Si substrate,

because of optimizing X-ray reflections and these reso-

lutions. Figure 3 represents 2D GIXD patterns indicat-

ing different crystallinities and chain orientations in these

PQT-12 films examined in this paper. It should be noted

that because of the geometry of GIXD experiment, the

peaks seen along the nominal qz axis (at qxy = 0� do not

reflect the true intensity profile in reciprocal space of the

corresponding Bragg peaks, due to off-specular diffrac-

tion and (at qxy = 0��17 2D GIXD pattern of the as-spun

PQT-12 film only showed intense peak of X-ray reflectiv-

ity along the qz axis and circular hallow ring, suggesting

that the chains were oriented parallel to the surface and

formed a less-ordered layer formation with a LC structure

(see Fig. 3(a)). Due to the preferential chain orientation

in as-spun PQT-12 films, annealed samples might have

highly crystalline structures via either thermal or solvent

annealing. GIXD pattern of the 130 �C annealed sample

(Fig. 3(b)) showed strong X-ray reflections of (h00� crys-
tal planes and another weak reflections (asterisk-marked

peaks, ∼1 % of (100� peak intensity) along the qz (out-

of-plane) axis, as well as reflection of (010� planes at

qxy (in-plane) = 1�65 Å−1. In this case, the intense peak

at qz = 0�379 Å−1 was indicated as the layer spacing,

d�100� = 16�6 Å, between (100� crystal planes containing

� overlapped backbones. In comparison to poly(3-dodecyl

thiophene) with d�100� of 25.5 Å, the considerably small

distance between the highly ordered (100� planes sup-

ported that side-chains preferred to form an interdigitated

structure and were highly tilted with respect to the surface

normal. As shown in Figure 3(b), the weak X-ray reflec-

tion at qz = 0�523 Å−1 was indicated as a new crystal with

much thinner layer spacing, d�100� of ca. 12.0 Å.

It was found that the polymorphic crystals in PQT-12

films competed together, strongly depending on the post

film treatments. In melt-crystallized films, the portion of

the thinner crystal phase was significantly increased, when

compared to that in the thicker one. In particular, it com-

pletely occupied solvent-annealed film, as determined by

2D GIXD patterns showing arc types of crystal reflections

(see Figs. 3(c and d)). Figure 4(a) showed out-of-plane

X-ray profiles extracted from 2D GIXD patterns of all

PQT-12 films examined. Based on AFM and GIXD analy-

ses, the distinguishable crystal phases could be speculated,

as shown in Figure 4(b).

The thinner crystal phase was expected as one of

PQT-12 polymorphic crystals and had less compact

� overlap and coil-like SCs, as determined by d�010� =
4�16 Å and d�100� ∼ 12 Å, which were much wider � over-

lap and closer layer spacing distances, respectively, than

those (16.8 Å and 3.80 Å) of highly ordered crystal struc-

ture with interdigitated side-chains.

For cast PQT-12 films, effects of the different � over-

lap structures and chain orientations on electrical OFET

Fig. 4. (a) out-of-plane X-ray profiles extracted from 2D GIXD pat-

terns. (b) Schematic diagrams of chain conformations of PQT-12 in two

discernible crystal phases examined.

performances were investigated. In PQT-12 OFETs, bot-

tom Au electrodes were lithographically patterned on the

OTS-treated SiO2/Si substrates by several step procedures

illustrated in Figure 5. Then, 50-nm-thick PQT-12 films

were spin-cast or further post-treated on the OTS-treated

SiO2/Si substrates including the bottom-contact Au elec-

trodes. Figure 6 represents typical drain current versus

drain voltage (ID–VD� output curves and drain current ver-

sus gate voltage (ID−VG� transfer curves of these OFETs,
respectively. In the saturation region, ID can be described

using the following equation,

ID = WCi

2L
�FET �VG−Vo�

2

where �FET is the field-effect mobility, W is the channel

width, L is the channel length, Ci is the capacitance per

unit area of the insulation layer (Ci = 10 nFcm−2�.
The 130 �C sample produced the maximum ID differed

by a factor of about 20, when compared to that (6 �A)

J. Nanosci. Nanotechnol. 12, 1220–1225, 2012 1223
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Fig. 5. Device fabrication schemes of bottom-contact Au electrodes and PQT-12 films on OTS-treated SiO2/Si substrates. (channel length, L and

width, W were 10 �m and 1500 �m, respectively.)

Fig. 6. (a) ID−VD output curves of OFET containing 130 �C annealed

PQT-12 film. (b) ID−VG transfer curves of OFET based on PQT-12 thin

films fabricated via different film treatments (VD =−80 V).

of the as-spun sample ( �FET ∼0.002 cm2V−1s−1� and pro-

duced the values of �FET as high as 0.02 cm2V−1s−1.

However, the solvent-annealed sample showing the lowest

value of �FET ∼6.3×10−5 cm 2V−1s−1 could be expected,

due to small crystal grains and large d�010� of PQT-12, as

high potential barriers to transfer charge carriers. For the

melt-crystallized samples, however, ID was not achieved

due to dewetted film formation at device channels. In addi-

tion, the shift of the threshold voltage in the as-cast and

solvent annealed samples to negative VG is mainly related

to the solvent residue or less-ordered � overlap in the

PQT-12 films, in comparison to the 130 �C sample (see

Fig. 6(b)).

The results strongly supported that one of the key

motors to achieve high performance OFETs is the con-

trol of �-conjugated structures of organic semicon-

ductors, enhancing charge carrier transports in OFETs.

The introduction of hydrophobic self-assembled mono-

layers (SAMs) and/or ultrathin polymer films on the

polar dielectrics has induced well-ordered crystals of

�-conjugated organic semiconductors, as well as the mini-

mization of the interfacial charge traps by the surface polar

groups. Through chemically anchoring an alkyl silane on

an oxide insulator, especially, the SAM-treated dielectrics

could provide robust surface hydrophobicity with solution

semiconducting layer processes.

3. CONCLUSION

�-conjugated PQT-12 had a liquid crystalline (LC) char-

acteristic, due to enough intervals (∼15.5 Å) to maximize

self-assembly of dodecyl side chains on �-conjugated

backbones. However, the relatively lower alkyl content

1224 J. Nanosci. Nanotechnol. 12, 1220–1225, 2012
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caused stability issues of PQT-12 solutions during film fab-

rication with slow solvent evaporation rates, i.e., precipi-

tation or gelation. Here, PQT-12 films were spun-cast on

OTS-treated SiO2/Si substrates from warm trichloroben-

zene (80 �C) to introduce smooth film texture. Then, their

crystalline structures could be considerably improved via

either post heat- or solvent-treatments. At temperatures

(125–138 �C) giving a LC state of PQT-12, mobile chains

were better migrated into preformed crystals held by inter-

molecular �–� interaction. Films annealed at 130 �C (for

2 hr) showed highly crystalline nanofibrils, in which dode-

cyl side-chains were highly interdigitated and narrow inter-

molecular � overlap distance was 3.80 Å. Via melting or

solvent exposure, however, the film crystallized from phys-

ically isotropic states at 170 �C or by exposure of TCB

vapor grew into less ordered PQT-12 crystals with coil-like

conformation of side-chains, resulting in higher � over-

lap distance of 4.16 Å. The corresponding bottom-contact

electrode OFETs were significantly affected by the crys-

talline structures of PQT-12. As a result, the hole mobili-

ties were the following order: 130 �C annealed > as-spun

> TCB-annealed. The usage of LC characteristic allowed

us to consistently achieve the desirable crystal structure of

PQT-12 and to robustly obtain high field-effect mobility

for OFET applications.
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